If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10s^2-43s+28=0
a = 10; b = -43; c = +28;
Δ = b2-4ac
Δ = -432-4·10·28
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-27}{2*10}=\frac{16}{20} =4/5 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+27}{2*10}=\frac{70}{20} =3+1/2 $
| -9.5c-9.8=-6.9c+7.88 | | 9x-17=94 | | 0.06x-18=12 | | -1/5(10x+29)=-5-2x | | k-4=8/2 | | (2x-4)=-8 | | -10=-7+v/2 | | -3(4-2q)=27 | | 38=p+38 | | 5y+3(5)=-5 | | 40-36+8n=12n | | -1+7g=6g-9 | | (-4x+2)=14 | | 2x+1/2=75/6 | | 13/4-1/12=6x | | 5y+3(0)=-5 | | -4.4-x=9.6 | | -2=r/1.5 | | 3(x-1)+8(x-2)=36 | | 53=x+8 | | -6-4-2b=10+3b | | y=10X+84 | | 2b/3-5=-1 | | 34(8x+20)=45 | | (2x+91)+(4x+31)=180 | | 5y+3(-5)=-5 | | -6n+3n-12=-36 | | -4(3p-2)=-52 | | 79=x-11 | | 1.2+x=-6.6 | | 16=5y-2-3y | | 5u+5.44=-9.95-1.1u+8.68 |